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‘ Plan I

. The inelastic Boltzmann equation, collision

rules, collision rates,
Extreme statistics, linear Boltzmann equation
Stationary solutions

Driven steady states

. Time dependent solutions



‘ The Inelastic Boltzmann equation (1D) I

¢ Collision rule (linear) r=1—2p, p+q¢g=1
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¢ General collision rate
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Theory: non-linear, non-local, dissipative




‘ The Inelastic Boltzmann equation I

Spatially homogeneous systems

What is the solution of this equation?
What is the nature of the velocity distribution?




‘ Inelastic Collisions (1D) I

¢ Relative velocity reduced by O <r <1

vy —vp = —r(ur —u2) vl\ /”02 ‘

¢ Momentum iIs conserved

U1 Vo = U1 uo / \u2

¢ Energy is dissipated >
1l —1r
AE = 2 (uq — un)QQ Q

¢ Limiting cases

__]0 completely inelastic (AE = max)
|1 elastic (AE = 0)




‘ Inelastic Collisions (any D) I

¢ Normal relative velocity reduced by O <r <1

(vi—vo) -n=—r(u;y —uz)-n

¢ Momentum conservation

vVi+vy=uj;+up ul/ \112
¢ Energy loss
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AE="—] = n
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¢ Limiting cases

O completely inelastic (AE = max)
T =
1 elastic (AE = 0)




‘ The collision rate I

¢ Collision rate
K (u1,up) = [(u; —up) - n|?

¢ Collision rate related to interaction potential (elastic)

() o g™ \ = 1 ,)CL — 1 ) U IViaXxXwell molecules

- o - Y 1 Hard spheres

¢ Balance kinetic and potential energy
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& Collisional cross-section
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‘ The Inelastic Boltzmann equation I

Spatially homogeneous systems

What is the solution of this equation?
What is the nature of the velocity distribution?




‘ Homogeneous cooling state: temperature decay I

5 Haff, JFM 1982
¢ Energy loss AT ~ (Av)

¢ Collision rate At ~ 1/(Av)>‘
¢ Energy balance equation

o ~—(AV)2TA o ar ~ _T1+A/2

7T

At dt
¢ Temperature decays, system comes to rest

T~t2/r = f(v) — 6(v)

Trivial stationary solution ‘




‘ Homogeneous cooling states: similarity solutions I

Esipov, Poeschel 97
¢ Similarity solution

0 1\ 11/)\,|\/ 21/

J(v,t) =177 P(vt™7)

¢ Stretched exponentials (overpopulatlon)
D(2) ~ exp [— \




‘ Are there nontrivial stationary solutions? I

¢ Stationary Boltzmann equation

collision rate gain loss

Nalve answer: NO!

¢ According to the energy balance equation
dl’
dt
¢ Dissipation rate is positive

[ >0
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‘ An exact solution (1D, A=0) I

Lamboitte & Brenig, unpub
¢ One-dimensional Maxwell molecules

¢ Fourier transform obeys a closed equation F<k>=J/dveikvf(v>

F(k) = F(pk)F(qk)

¢ Exponential solution
F (k) = exp(—uvglk|)

¢ Lorentzian velocity distribution

1 1
f)= "1

A nontrivial stationary solution does exist!




‘ Properties of stationary solution I

¢ Perfect balance between collisional loss and gain
¢ Purely collisional dynamics (no source term)

¢ Family of solutions: scale invariance v-> v/v,

fo) = ————

U — 7/ / \
7 mug 1+ (v/vg)?
¢ Power-law high-energy tail

f(v) ~ v 2

¢ Infinite energy, infinite dissipation rate!

Are these stationary solutions physical?




‘ Extreme Statistics (1D) I

¢ Collision rule: arbitrary velocities

Ernst, Goldhirsh
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¢ Large velocities: linear but nonlocal process

A
v — (pv, qu)
¢ High- energles linear equation
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Linear, nonlocal evolution equation‘




‘ Stationary solution (1D) I

¢ High-energies: linear equation

T T AN S
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loss gain gain

& Power-law tall

f(v) ~v2 7




‘ Energy Cascades (1D) I

Energetic particles “see” a static medium

UV —— (p’U, Q’U)
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‘ Extreme Statistics (any D) I

¢ Collision process: large velocities
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¢ Stretching parameters related to impact angle

a=(1-—p)cosh ﬁ:\/l—(l—pz)cos2

¢ Energy decreases, velocity magnitude increases

o+ 52 <1 a+pB>1

¢ Linear equation
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‘ Power-laws are generic I

¢ Velocity distribution always has power-law tall

fv) ~v™?

¢ Characteristic exponent varies with parameters

/A \
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¢ Tightbounds 1 <o—d—X <2

¢ Elastic limit is singular ¢ — d+2+A

Dissipation rate always divergent
Energy finite or infinite




‘ The characteristic exponent ¢ (d=2,3) I

002 04 086 08 1
T

‘cvaries with spatial dimension, collision rules ‘




‘ Monte Carlo Simulations: Driven Steady States I

——————T——T——————
. |=— theory
O simulation

¢ Compact initial distribution

¢ Inject energy at very large
velocity scales only

¢ Maintain constant total f
energy

¢ “Lottery” implementation: 0.1
— Keep track of total energy [ o
dissipated, E; VR el

— With small rate, boost a particle
by E; U

0.3F

0.2F

Excellent agreement between theory and simulation



Further confirmation: extremal statistics

Maxwell molecules (1D, 2D) Hard spheres (1D, 2D)
‘IO-1 — theory 10_; — theory
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‘ Injection, cascade, dissipation I

Experimental
realization?
Energetic particle
“shot” into static
medium

Energy balance

I_rv'yV2

YO jogy V

‘*Energy is injected ONLY AT LARGE VELOCITY SCALES!
‘*Energy cascades from large velocities to small velocities
‘*Energy dissipated at small velocity scales




‘ Conventional forced steady states I

T van Noije, M Ernst 97
¢ Energy injection: thermal forcing (at all scales)

dv/dt = n
¢ Energy dissipation: inelastic collision
v — (pv, qu)
¢ Steady state equation
0= pT I 2 [y 7] - s
=V |p=—===—XP/ 47T TR ]

¢ Stretched exponentlals

v) ~ exp (—viTA2)
TR )



‘ Nonequilibrium velocity distributions I

Mechanically vibrated beads
F Rouyer & N Menon 00
Electrostatically driven powders
| Aronson, J Olafsen, EB PRL 05

f(v)

¢ Gaussian core

¢ Overpopulated talil
f(v) ~ exp (—[v])
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¥ experiment A
O  experiment B
theory

M, — Maxwellian

Excellent agreement between
theory and experiment

1 <9< 3/2
& Kurtosis
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13 6 experiment

balance between
collisional dissipation,
energy injection from walls




‘ Energy balance I

¢ Energy injection rate 7Y
& Energy injection scale |/
¢ Typical velocity scale v
¢ Balance between energy injection and dissipation
A d—o
v~ Vi (V/vg)

¢ For “lottery” injection: injection scale diverges with

Injection rate
A2 < d 2

V ~/ 4 // ] \ )
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Energy injection selects stationary solution ‘




with Ben Machta (Brown)

‘ Time dependent solutions (1D, A>0) I
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¢ Self-similar distribution o’
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¢ Cutoff velocity decays 10
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Hybrid between steady-state and time dependent state




‘ Numerical confirmation I

Velocity distribution Scaling function

A third family of solutions exists




‘ Extreme statistics I

¢ Scaling function

©. @)
- r A o0 1
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n=1 ) ) k#n
¢ Large velocities: as in free cooling
d(x) ~exp(=z) == o0
¢ Small velocities: non-analytic behavior
1 —P(x) ~ exp [—(Inx)z} x — O

‘ Hybrid between steady-state and time dependent state

Maxwell Model (A=0) only unsolved case!



‘ Summary I

¢ Time dependent solution
- il/A\lr

f(v,t) =t/ "W (vt™'")
¢ Time independent solution
fs(v) ~v™°
¢ Hybrid solution
| r 1/

f(0,8) = fo(0) P (otH/)

Are there other types of solutions?



‘ Conclusions I

¢ New class of nonequilibrium steady states

¢ Energy cascades from large to small velocities

¢ Power-law high-energy talil

¢ Energy input at large scales balances dissipation
¢ Associated similarity solutions exist as well

¢ Temperature insufficient to characterize velocities

¢ Experimental realization: requires a different driving
mechanism



‘ Outlook I

¢ Spatially extended systems
¢ Spatial structures
¢ Polydisperses granular media

¢ Experimental realization

E. Ben-Naim and J. Machta, Phys. Rev. Lett. 94, 138001 (2005)
E. Ben-Naim, B. Machta, and J. Machta, cond-mat/0504187
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‘ Driven Granular gas I

Vigorous driving % ”
Spatially uniform system ‘\ PP

Particles undergo binary collisions | ®3 I IZ.

Velocities change due to \.zj‘K.

1. Collisions: lose energy

2. Forcing: gain enerqy

What is the typical velocity (granular “temperature”)?
T = (v°)
What is the velocity distribution?

f(w)



‘ Comparing kinetic theories I
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